Combinatorial constructions for optimal multiple-weight optical orthogonal signature pattern codes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial constructions for maximum optical orthogonal signature pattern codes

An (m, n, k, λa, λc) optical orthogonal signature pattern code (OOSPC) is a family C of m × n (0, 1)-matrices of Hamming weight k satisfying two correlation properties. OOSPCs find application in transmitting two-dimensional image through multicore fiber in CDMA networks. Let Θ(m, n, k, λa, λc) denote the largest possible number of codewords among all (m, n, k, λa, λc)-OOSPCs. An (m, n, k, λa, ...

متن کامل

Combinatorial constructions of optimal optical orthogonal codes with weight 4

A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i 6≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0,y1, . . ., yv−1) ∈ C with x 6= y, and any integer i, where the subscripts are take...

متن کامل

Combinatorial Constructions of Optimal (m, n, 4, 2) Optical Orthogonal Signature Pattern Codes

Optical orthogonal signature pattern codes (OOSPCs) play an important role in a novel type of optical code-division multiple-access (CDMA) network for 2-dimensional image transmission. There is a one-to-one correspondence between an (m,n,w, λ)-OOSPC and a (λ+ 1)-(mn,w, 1) packing design admitting an automorphism group isomorphic to Zm × Zn. In 2010, Sawa gave the first infinite class of (m,n, 4...

متن کامل

Combinatorial Constructions for Optical Orthogonal Codes

A (v, k, λ) optical orthogonal code C is a family of (0, 1) sequences of length v and weight k satisfying the following correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C and any integer i ̸≡ 0 (mod v); (2) ∑ 0≤t≤v−1xtyt+i ≤ λ for any x = (x0, x1, . . . , xv−1) ∈ C, y = (y0, y1, . . . , yv−1) ∈ C with x ̸= y, and any integer i, where the subscripts are taken mo...

متن کامل

Unified combinatorial constructions of optimal optical orthogonal codes

We present unified constructions of optical orthogonal codes (OOCs) using other combinatorial objects such as cyclic linear codes and frequency hopping sequences. Some of obtained OOCs are optimal or asymptotically optimal with respect to the Johnson bound. Also, we are able to show the existence of new optimal frequency hopping sequences (FHSs) with respect to the Singleton bound from our obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2016

ISSN: 0012-365X

DOI: 10.1016/j.disc.2015.08.005